Hamiltonian technique for the construction of asymptotically flat metrics. I. Stationary axisymmetric gravitational field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9245
(http://iopscience.iop.org/0305-4470/9/2/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:15

Please note that terms and conditions apply.

tmiltonian technique for the construction of asymptotically metrics I. Stationary axisymmetric gravitational field

M P Bovyn \dagger
Rijksuniversiteit-Gent, Seminarie voor Wiskundige Natuurkunde, Krijgslaan 271-S9, B-9000 Gent, Belgium

Received 7 August 1975, in final form 8 October 1975

Abstract

As a first step towards the investigation of more general asymptotically flat metrics a new technique is devised which, within the framework of the Hamilton formalism and using proper boundary conditions for a stationary axisymmetric gravitational field, yields the Kerr metric. This metric appears as a 'first-order correction' with respect to the Schwarzschild metric which is built into the more general metric. This goal can only be attained if one introduces so called 'kinematical momenta'. A physical interpretation of these momenta becomes possible if one studies the force exerted by the Kerr field on a spinning test particle.

L hitrodaction

farecent article Berger et al (1972) rederived the Schwarzschild metric by applying te ADM formalism (Arnowitt and Deser 1959, Arnowitt et al 1959, 1960a, b, c, d, 161a, b, Dirac 1958a, b) to a spherically symmetric system. Unfortunately when we aply the same method to an axisymmetric system, in the hope of recovering the Kerr setric, the result is a system of two non-linear differential equations which we are mable to integrate. At this point we introduce a construction technique which is based osome reasonable assumptions and foundations in view of later applications to more gneral situations. Since we want to work with asymptotically flat metrics we start our dexussion with the asymptotic expression for such a metric, as given by Misner et al (1973, p 449, to be referred to as MTW).

$$
\begin{align*}
\mathrm{d}^{2}=- & {\left[1-\frac{2 M}{r}+\mathrm{O}\left(\frac{1}{r^{3}}\right)\right] \mathrm{d} t^{2}-2\left[2 \epsilon_{j k l} \frac{J^{k} x^{l}}{r^{3}}+\mathrm{O}\left(\frac{1}{r^{3}}\right)\right] \mathrm{d} x^{j} \mathrm{~d} t } \\
& +\left[\left(1+\frac{2 M}{r}\right) \delta_{i j}+\mathrm{O}\left(\frac{1}{r^{3}}\right)\right] \mathrm{d} x^{i} \mathrm{~d} x^{j} \tag{1.1}
\end{align*}
$$

were M stands for the mass and J^{k} for the spin of the source of the gravitational field. Rediation would cause extra terms in r^{-1} to occur in (1.1). In terms of the ADM line
tenent

$$
\begin{equation*}
\mathrm{ds} s^{2}=\left(-N^{2}+N_{i} N^{i}\right) \mathrm{d} t^{2}+2 N_{\mathrm{i}} \mathrm{~d} x^{i} \mathrm{~d} t+\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \tag{1.2}
\end{equation*}
$$

were N and N^{i} are the so called lapse and shift functions and $\left\|\gamma_{i j}\right\|$ is the metric tensor in Thoimat NiFwo.
three-space. We now define the following metric as a generalization of (1.1):

$$
\begin{align*}
& \gamma_{11}:=\mathrm{e}^{2 \mu}=\frac{r^{n+2}+\delta_{n+1} r^{n+1}+\ldots}{r^{n+2}+\left(\sigma_{n+1}-2 M\right) r^{n+1}+\ldots} \tag{1.3a}\\
& \gamma_{22}:=\mathrm{e}^{2 \lambda}=\frac{r^{n+2} \alpha_{n+1} r^{n+1}+\ldots}{r^{n}+\beta_{n-1} r^{n-1}+\ldots} \tag{1.36}\\
& \gamma_{33}:=\mathrm{e}^{2 \rho} \sin ^{2} \theta=\frac{r^{n+4}+\epsilon_{n+3} r^{n+3}+\ldots}{r^{n+2}+\eta_{n+1} r^{n+1}+\ldots} \sin ^{2} \theta \tag{1.3c}\\
& N^{1}=\frac{\xi_{n} r^{n}+\xi_{n-1} r^{n-1}+\ldots}{r^{n+2}+\chi_{n+1} r^{n+1}+\ldots} \tag{1.3d}\\
& N^{2}=\frac{\psi_{n+1} r^{n+1}+\psi_{n} r^{n}+\ldots}{r^{n+4}+\zeta_{n+3} r^{n+3}+\ldots} \tag{1.3t}\\
& N^{3}=\frac{\omega_{n+1} r^{n+1}+\omega_{n} r^{n}+\ldots}{r^{n+4}+\kappa_{n+3} r^{n+3}+\ldots} \tag{1.3f}
\end{align*}
$$

where $\alpha_{i}, \beta_{i}, \delta_{i}, \ldots$ are arbitrary unknown functions of θ, ϕ and t. Their number is limited by the value of the parameter n, since we forbid the occurrence of negative indices and exponents. N can be recovered from the other metric parameters. We remark that the Schwarzschild metric is built in for $n=0$. The most general metric is found by the substitution of (1.3) into the Einstein equations, for arbitrary large values of n. As a result one obtains an infinite system of linear differential relations. These have to be integrated by algebraic and analytic manipulations for increasing values oin, starting at $n=0$. This technique will be demonstrated in a subsequent paper for general (i.e. non-symmetrical) time-dependent systems (for $n=0,1$). In that article we will also discuss the generality of the metric (1.3). As a last remark we would like to point out that different values of n yield non-identical linear differential relations between the metric functions because of the changing number of variables. It is therefore not established a priori that a solution of the Einstein equations for n is also the only solution for $n^{\prime}>n$.

We now outline a few elements of the Hamilton formalism. In the ADM formalism one defines the action as:

$$
\begin{equation*}
I:=\int\left(\pi^{i i} \gamma_{i j}-N \mathscr{H}^{0}-N_{i} \mathscr{H}^{i}\right) \mathrm{d} t \mathrm{~d}^{3} x . \tag{1.4}
\end{equation*}
$$

Here we use the ADM notation, except for $\gamma_{i j}:={ }^{(3)} g_{i j A D M}$. It is always understood in $\$ 1$ and $\S 2$ that all quantities are defined in three-space so that we can omit the suffix (3) everywhere. In (1.4) $\gamma_{i j} \pi^{i j}, N$ and N_{i} are independent variables and variation of the action (1.4) with respect to these variables yields the Einstein equations. \mathscr{H}^{0} and \mathscr{H}° are defined in the following way:

$$
\begin{align*}
& \mathscr{H}^{0}:=\gamma^{-1 / 2}\left[\pi^{i j} \pi_{i j}-\frac{1}{2}\left(\pi_{l}^{l}\right)^{2}\right]-\gamma^{1 / 2} R \\
& \mathscr{H}^{i}:=-2 \pi_{l j}^{i j} \tag{1.5}
\end{align*}
$$

Variation of the action with respect to N and N_{i} determines the initial value equations for $\pi^{i j}$:

$$
\begin{equation*}
\mathscr{H}^{\mu}=0 \quad(\mu=0,1,2,3) \tag{1.6}
\end{equation*}
$$

Tisdynamical Einstein equations can be obtained by varying I with respect to the - $)$ ing relation (1.5) one then finds:

$$
\begin{align*}
& i=N \gamma^{1 / 2}\left(\gamma^{i j} R-R^{i j}\right)-2 N \gamma^{-1 / 2}\left(\pi_{m}^{i} \pi^{m j}-\frac{1}{2} \pi_{m}^{m} \pi^{i j}\right) \\
& \quad-N_{\mid l}^{l \mid} \gamma^{1 / 2} \gamma^{i j}+\gamma^{1 / 2} N^{i j}+\left(\pi^{i j} N^{l}\right)_{\mid l}-N_{\mid m}^{i} \pi^{m j}-N_{\mid m}^{j} \pi^{m i} . \tag{1.7}
\end{align*}
$$

hrajing I with respect to the $\pi^{i j}$ one simply recovers the definition for the $\pi_{i j}$ as:

$$
\begin{equation*}
\gamma_{i j}=2 N \gamma^{-1 / 2}\left(\pi_{i j}-\frac{1}{2} \gamma_{i j} \pi_{l}^{l}\right)+N_{i \mid j}+N_{j \mid i} \tag{1.8}
\end{equation*}
$$

redill dispose of four coordinate conditions, three of which we use to diagonalize $\left\|\gamma_{i j}\right\|$, the fourth one is needed to secure the slicing of the space-time by the following maxion:

$$
\begin{equation*}
\operatorname{Tr} \pi=\pi_{1}^{\prime}:=\pi=0 . \tag{1.9a}
\end{equation*}
$$

ris condition is valid on an arbitrary initial space-like hypersurface. Using the amical equations (1.7) one can show that (1.9a) induces an equation for the lapse mation N :

$$
\begin{equation*}
N_{\|}^{\prime!}=N R . \tag{1.9b}
\end{equation*}
$$

1 Cadalation of the metric in the axisymmetric case

Wain now we did not require the three-metric to exhibit any particular symmetry. We the now the three-line element for an axisymmetric system by:

$$
\begin{equation*}
\mathrm{d} l^{2}:=\mathrm{e}^{2 \mu} \mathrm{dr} r^{2}+\mathrm{e}^{2 \lambda} \mathrm{~d} \theta^{2}+\mathrm{e}^{2 \rho} \sin ^{2} \theta \mathrm{~d} \phi^{2} \tag{2.1}
\end{equation*}
$$

mer μ, λ and ρ are solely functions of r, θ and t. In order to have the correct smplotic form the metric must agree with the general form given by MTW, i.e.:

$$
\begin{align*}
& \gamma_{11}=\left[1-\frac{2 M}{r}+\mathrm{O}\left(\frac{1}{r^{3}}\right)\right]^{-1} \\
& \gamma_{22}=\gamma_{33} \sin ^{-2} \theta=\left[r^{2}+\mathrm{O}\left(r^{0}\right)\right] \\
& (N)^{2}=1-\frac{2 M}{r}+\mathrm{O}\left(\frac{1}{r^{3}}\right) \\
& N_{3}=-\frac{2 M a r \sin ^{2} \theta}{r^{2}}+\mathrm{O}\left(\frac{1}{r^{3}}\right) \tag{2.2}
\end{align*}
$$

营 $a:=J / M, J$ being the angular momentum of the source. The Lagrange multiand N_{i} vanish in this coordinate system. The momenta can be defined by:

$$
\left\|\pi^{i j}\right\|=\left(\begin{array}{lll}
\frac{1}{2} \pi_{\mu} \mathrm{e}^{-2 \mu} & \pi^{12} & \pi^{13} \tag{2.3}\\
\pi^{21} & \frac{1}{2} \pi_{\lambda} \mathrm{e}^{-2 \lambda} & \pi^{23} \\
\pi^{31} & \pi^{32} & \frac{1}{2} \pi_{\rho} \mathrm{e}^{-2 \rho} \sin ^{-2} \theta
\end{array}\right)
$$

4tmark that it is not inconsistent to have off-diagonal $\pi_{i j}$ appearing in (2.3), because Tay resulf from the initial value equations which we have not written down yet. As
we can read from the action:

$$
\begin{equation*}
I=\int \mathrm{d} t \mathrm{~d}^{3} x\left(\pi_{\mu} \dot{\mu}+\pi_{\lambda} \dot{\lambda}+\pi_{\rho} \dot{\rho}-N \mathscr{H}^{0}-N_{i} \mathscr{H}^{i}\right) \tag{2.4}
\end{equation*}
$$

the diagonal elements $\left\{\pi_{\mu}, \pi_{\lambda}, \pi_{\rho}\right\}$ are the momenta conjugated to the quantities $\{\mu, \lambda, \rho\}$ and they completely determine the dynamics of the system. We note finally that the slicing condition ($1.8 a, 1.8 b$) reduces the number of degrees of freedom from three, in equation (2.3), to two, as could be expected. As we mentioned in the introduction we will look for more general metrics in a further article; at the preseat time however, we limit ourselves to the search for a stationary metric; thus

$$
\begin{equation*}
\dot{\gamma}_{i j}=0 . \tag{2.5}
\end{equation*}
$$

In these circumstances the equations (1.7) assign to the momenta the following values:

$$
\begin{equation*}
\pi_{\mu}=\pi_{\lambda}=\pi_{\rho}=0 \tag{2.6a,b,c}
\end{equation*}
$$

which already eliminates all dynamical freedom and

$$
\begin{align*}
& \pi_{12}=0 \tag{2.6d}\\
& \pi_{13}=\frac{\mathrm{e}^{\mu+\lambda+3 \rho}}{2 N} \sin ^{3} \theta\left(N^{3}\right)^{\prime} \tag{2.6e}\\
& \pi_{23}=-\frac{\mathrm{e}^{\mu+\lambda+3 \rho}}{2 N} \sin ^{3} \theta\left(N^{3}\right)^{\vdots} \tag{2.6f}
\end{align*}
$$

Differentiation with respect to t, r and θ is denoted respectively by a dot, a prime and a semicolon. As a next step we calculate \mathscr{H}^{0} and \mathscr{H}^{i} and find:

$$
\begin{align*}
& \mathscr{H}^{1} \equiv \mathscr{H}^{2} \equiv 0 \tag{2.7a,b}\\
& \mathscr{\mathscr { C } ^ { 3 }}:=-2\left(\pi^{13}\right)^{\prime}-2\left(\pi^{23}\right)^{i}-4 \rho^{\prime} \pi^{13}-4\left(\rho^{i}+\cot \theta\right) \pi^{23} \tag{2.7c}\\
& \mathscr{H}^{0}=\mathrm{e}^{-\mu-\lambda-\rho} \sin ^{-1} \theta\left\{2 \pi_{23} \pi^{23}+2 \pi_{31} \pi^{31}+2 \mathrm{e}^{2(\lambda+\rho)}\right. \\
& \times \sin ^{2} \theta\left[\lambda^{\prime \prime}+\rho^{\prime \prime}-\mu^{\prime} \lambda^{\prime}-\mu^{\prime} \rho^{\prime}+\rho^{\prime} \lambda^{\prime}+\left(\lambda^{\prime}\right)^{2}+\left(\rho^{\prime}\right)^{2}\right]+2 \mathrm{e}^{2(\mu+\rho)} \\
& \times \sin ^{2} \theta\left[\mu^{: i}+\rho^{i:}+\mu^{i} \rho^{i}+\left(\mu^{;}\right)^{2}+\left(\rho^{i}\right)^{2}-\frac{1}{2} \lambda^{i}\left(\mu^{;}+\rho^{i}\right)-1\right. \\
& \left.\left.+\cot \theta\left(\mu^{i}+\rho^{i}-\frac{1}{2} \lambda^{i}\right)\right]\right\} . \tag{2.7d}
\end{align*}
$$

Since \mathscr{H}^{3} involves only non-dynamical variables, the constraint equation $\mathscr{H}^{3}=0$ must follow as a result of the other Einstein equations. The four initial value equations read:

$$
\begin{align*}
& \mathscr{H}^{1} \equiv \mathscr{H}^{2} \equiv 0 \tag{2.8a,b}\\
& \mathscr{H}^{3}=0 \tag{2.8c}\\
& \mathscr{H}^{0}=0 \tag{2.8d}
\end{align*}
$$

with ($2.8 c$) a consequence of $(2.8 d)$ and the dynamic equations. When we replace the value of R by $N_{\mid l}^{l /} / N$ in (2.8d) we include the slicing condition (1.9b). By the same token we guarantee that the dynamical equations for $\dot{\pi}_{\mu}, \dot{\pi}_{\lambda}$ and $\dot{\pi}_{\rho}$ are satisfied. Only one dynamical equation is left, that for $\dot{\pi}^{12}$. Those for $\dot{\pi}^{13}$ and $\dot{\pi}^{23}$ are identically zero. Thus:
$N\left[\rho^{\prime \prime}-\mu^{\prime} \rho^{\prime}-\left(\rho^{;}+\cot \theta\right)\left(\lambda^{\prime}-\rho^{\prime}\right)\right]+N^{\prime \prime}-\mu^{i} N^{\prime}-\lambda^{\prime} N^{;}-\frac{\mathrm{e}^{2 \rho}}{2 N}\left(N^{3}\right)^{\prime}\left(N^{3}\right)^{;} \sin ^{2} \theta=0 . \quad$ (2.9)
(28d)combined with (1.9b) and (2.9) are the Einstein equations which remain to be Thereir solution is not straightforward. By deducing a functional form for the liplier N we can bring in a small simplification. We find N by comparing the three-xdiour-volume densities $(\gamma)^{1 / 2}$ and $\left(-^{(4)} g\right)^{1 / 2}$ for the spherically symmetric (ss) and misymetric (AS) case:

$$
\begin{align*}
& \left(-{ }^{(4)} g_{\mathrm{SS}}\right)^{1 / 2}=\mathrm{e}^{2 \lambda_{\mathrm{ss}}} \sin \theta \quad\left(\gamma_{\mathrm{SS}}\right)^{1 / 2}=\mathrm{e}^{\mu_{\mathrm{Ss}}+2 \lambda_{\mathrm{ss}}} \sin \theta \\
& N_{\mathrm{SS}}=\mathrm{e}^{-\mu_{\mathrm{SS}}} \tag{2.10}
\end{align*}
$$

where $\lambda_{\text {SS }}=\rho_{\text {SS }}$ and

$$
\left(-^{(4)} g\right)^{1 / 2}=N(\gamma)^{1 / 2}
$$

sinebinding relation between the three quantities. In the axisymmetric case $\left(\gamma_{\mathrm{AS}}\right)^{1 / 2}$ is sinen by:

$$
\left(\gamma_{\mathrm{AS}}\right)^{1 / 2}=\mathrm{e}^{\mu_{\mathrm{AS}}+\lambda_{\mathrm{AS}}+\rho_{\mathrm{AS}}} \sin \theta .
$$

This still leaves some freedom in the choice of N and $\left(-{ }^{(4)} g\right)^{1 / 2}$. For purely penomenological reasons we choose

$$
\left(-{ }^{(4)} g_{\mathrm{AS}}\right)^{1 / 2}=\mathrm{e}^{2 \lambda_{\mathrm{AS}}} \sin \theta
$$

nd

$$
N_{A S}=\mathrm{e}^{-\mu_{A S}+\lambda_{A S}-\rho_{A S}}
$$

ゅ that for J tending to zero the axisymmetric solution will smoothly turn into a pheterically symmetric metric.
Finally we introduce the special form (1.3) for the metric into the Einstein equations wod wet for $n=0$: as ansatz

$$
\begin{align*}
& \gamma_{22}:=\mathrm{e}^{2 \lambda}=r^{2}+\beta_{1} \tag{2.11a}\\
& \gamma_{33}:=\mathrm{e}^{2 \rho} \sin ^{2} \theta=\frac{r^{4}+d_{2} r^{2}+d_{1} r+d_{0}}{r^{2}+\beta_{2}} \sin ^{2} \theta \tag{2.11b}\\
& \gamma_{11}:=\mathrm{e}^{2 \mu}=\frac{r^{2}+\beta_{3}}{r^{2}-2 M r+d_{3}} \tag{2.11c}\\
& N=\mathrm{e}^{-\mu+\lambda-\rho} \tag{2.11d}\\
& N_{1}=0 \tag{2.11e}\\
& N_{2}=0 \tag{2.11f}\\
& N_{3}=\frac{2 M \operatorname{Mar} \sin ^{2} \theta}{r^{2}+\beta_{4}} . \tag{2.11~g}
\end{align*}
$$

We notice that the role of the singularity $r=0$ of the ss case has been taken over by $r^{2}+\beta_{i}=0$ in the as case. Since we want the physical interpretation of both singularities the the same-as the location of the source of the gravitational field-it is easy to see组; have to be equal. Thus:

$$
\begin{equation*}
\beta_{i}=\beta . \tag{2.11h}
\end{equation*}
$$

Now in each of the Einstein equations we can group all terms on a common dominator as coefficients of a certain power of r. In order to satisfy the equations,
each of the coefficients has to vanish. This leads to a sizable number of sub-equations, Only a small fraction of them is linear in the metric parameters. We will thus integrate the linear equations and check the solution on the non-linear ones. When we rescale r^{n} mex to be r^{0} we find for \mathscr{H}^{0} the following results: the coefficients of r^{0} and r^{-1} are identically zero; this is something we would expect, because we had the Schwarzactild metric built into (1.3). The vanishing of the coefficient of r^{-2} then gives:

$$
\begin{equation*}
d_{3}^{i}+d_{3} \cot \theta+2 d_{3}-d_{2}^{i ँ}-d_{2}^{\vdots} \cot \theta-2 d_{2}+\beta^{i:}+\beta^{\prime} \cot \theta+2 \beta=0 . \tag{2.12a}
\end{equation*}
$$

The same application to the coefficient of order r^{-3} leads to:

$$
\begin{align*}
&-2 M d_{3}^{\vdots}-2 M d_{3}^{i} \cot \theta-8 M d_{3}+4 M d_{2}^{i}+4 M d_{2}^{i} \cot \theta+16 M d_{2} \\
&-d_{\mathrm{i}}^{\vdots}-d_{1}^{i} \cot \theta-6 d_{1}-4 M \beta^{;}-4 M \beta^{;} \cot \theta-16 M \beta=0 . \tag{2.12b}
\end{align*}
$$

It follows from (2.12b) that d_{1} contains M linearly. Therefore in order r^{-4} we get two equations instead of one:
(a) Order M^{0} :

$$
\begin{align*}
& d_{3}\left(2 \beta+d_{3}+2 d_{2}\right)+d_{3}\left(-d_{3}+d_{3} \cot \theta+2 \beta \cot \theta+2 d_{2} \cot \theta\right) \\
& +d_{2}^{\ddot{2}}\left(-d_{2}-2 d_{3}-2 \beta\right)+d_{2}\left(d_{2}^{i}-d_{2} \cot \theta-2 \beta \cot \theta-2 d_{3} \cot \theta\right) \\
& +\beta^{\because} \because\left(2 d_{3}+2 d_{2}+\beta\right)+\beta^{\circ}\left(-\beta^{i}+2 d_{2} \cot \theta+\beta \cot \theta+2 d_{3} \cot \theta\right) \\
& -d_{0}^{i}-d_{0}^{i} \cot \theta-12 d_{0}+2\left(d_{2}\right)^{2}-6 d_{2} d_{3}+4\left(d_{3}\right)^{2}+14 \beta d_{3} \\
& -2 \beta^{2}=0 \tag{2.12c;}
\end{align*}
$$

(b) order M^{2} :

$$
\begin{align*}
-4 M^{2} d_{2}^{i}-4 & M^{2} d_{2}^{j} \cot \theta+4 M d_{i}^{i}+4 M d_{i} \cot \theta+4 M \beta^{i}+4 M^{2} \beta^{;} \\
& \times \cot \theta+42 M d_{1} \neg 40 M^{2} d_{2}+8 M^{2} d_{3}+40 M^{2} \beta-36 M^{2} a^{2} \sin ^{2} \theta=0 . \tag{2.12c}
\end{align*}
$$

From these equations we can easily deduce that

$$
\begin{equation*}
d_{0} \sim a^{4} \quad d_{1} \sim M a^{2} \quad d_{2}, d_{3}, \beta \sim a^{2} \tag{2.12d}
\end{equation*}
$$

We can operate in a similar way for the second Einstein equation. Again the coefficients of order r^{0} and r^{-1} yield zero. The next order, r^{-2}, gives the following equation:

$$
\begin{equation*}
2 d_{2}^{i}-4 \beta^{i}-2 d_{3}^{j}+\cot \theta\left(-4 d_{2}+8 \beta\right)=0 \tag{2.13a}
\end{equation*}
$$

Order r^{-3} gives:

$$
\begin{equation*}
-6 M d_{2}^{i}+2 d_{\mathrm{i}}^{i}+8 M \beta^{i}+\cot \theta\left(-6 d_{1}+8 M d_{2}-16 M \beta\right)=0 \tag{2.13b}
\end{equation*}
$$

In order r^{-4} we can again distinguish between order M^{0} :

$$
\begin{align*}
d_{2}^{j}\left(4 d_{2}+8 \beta\right) & +d_{3}^{j}\left(2 d_{2}\right)+\beta^{:}\left(-8 d_{2}-4 d_{3}-8 \beta\right)+2 d_{0}^{j} \\
& +\cot \theta\left[-8 d_{0}-8\left(d_{2}\right)^{2}+8 \beta^{2}-4 d_{2} d_{3}+16 d_{2} \beta+8 d_{3} \beta\right]=0 \tag{1}
\end{align*}
$$

and order M^{2} :

$$
\begin{equation*}
-6 M d_{1}^{i}+12 M d_{1} \cot \theta=0 \tag{1}
\end{equation*}
$$

The result of the integration is:

$$
\begin{equation*}
d_{1}=2 M a^{2} \sin ^{2} \theta \tag{2.146}
\end{equation*}
$$

$$
\begin{align*}
& d_{2}=a^{2}+a^{2} \cos ^{2} \theta \tag{2.14b}\\
& \beta=a^{2} \cos ^{2} \theta \tag{2.14c}\\
& d_{3}=a^{2} \tag{2.14d}\\
& d_{0}=a^{4}-a^{4} \sin ^{2} \theta . \tag{2.14e}
\end{align*}
$$

F will have to check all nonlinear equations and we find that they vanish when we (2.14) in them, so that the metric with parameters (2.14) is an exact solution for EFinstein equations, the Kerr metric:

$$
\begin{align*}
& \gamma_{11}:=\mathrm{e}^{2 \mu}=\frac{r^{2}+a^{2} \cos ^{2} \theta}{r^{2}-2 M r+a^{2}} \tag{2.15a}\\
& \gamma_{22}:=\mathrm{e}^{2 \lambda}=r^{2}+a^{2} \cos ^{2} \theta \tag{2.15b}\\
& \gamma_{33}:=\mathrm{e}^{2 \rho} \sin ^{2} \theta=\frac{\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2} \theta\left(r^{2}-2 M r+a^{2}\right)}{r^{2}+a^{2} \cos ^{2} \theta} \tag{2.15c}\\
& N_{3}=-\frac{2 M a r \sin ^{2} \theta}{r^{2}+a^{2} \cos ^{2} \theta} \tag{2.15d}\\
& N_{1}=N_{2}=0 \tag{2.15e,f}\\
& (N)^{2}=\mathrm{e}^{-2 \mu+2 \lambda-2 \rho}=\frac{\left(r^{2}-2 M r+a^{2}\right)\left(r^{2}+a^{2} \cos ^{2} \theta\right)}{\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2} \theta\left(r^{2}-2 M r+a^{2}\right)} \tag{2.15~g}
\end{align*}
$$

Trufi-diagonal momenta can now also be calculated:

$$
\begin{align*}
& \pi^{13}=\frac{M a \sin \theta\left[r^{2}\left(3 r^{2}-a^{2}\right)-a^{2} \cos ^{2} \theta\left(r^{2}-a^{2}\right)\right]}{\left(r^{2}+a^{2} \cos ^{2} \theta\right)\left[\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2} \theta\left(r^{2}-2 M r+a^{2}\right)\right]} \tag{2.15h}\\
& \pi^{23}=\frac{2 M a^{3} r \sin ^{2} \theta \cos \theta}{\left(r^{2}+a^{2} \cos ^{2} \theta\right)\left[\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2} \theta\left(r^{2}-2 M r+a^{2}\right)\right]} \tag{2.15i}
\end{align*}
$$

Fepropose to call these off-diagonal momenta 'kinematical momenta' so that the dimction between these momenta and dynamical ones on the diagonal becomes dearer.

1 Ahsical interpretation of the kinematical momenta

Adxated study of a spinning test particle in an asymptotically flat space-time has been debefore (Schiff 1960, Wald 1972, Wilkins 1970), so we shall confine ourselves to a veoutine of the theory on this topic. Throughout this section we will use Wald's madionexcept that four-space-time quantities will now have a (4) suffix. The equation drotion for a spinning test particle is given by:

$$
\begin{equation*}
\frac{\mathrm{D}^{(4)} p^{\mu}}{\mathrm{D} s}=-\frac{1}{2}{ }^{(4)} R^{\mu}{ }_{\nu \rho \sigma}^{(4)} v^{\nu(4)} S^{\rho \sigma} \tag{3.1}
\end{equation*}
$$

Wersis the arc length, ${ }^{(4)} p^{\mu}$ the four-momentum, ${ }^{(4)} v^{\nu}$ the four-velocity and ${ }^{(4)} S^{\rho \sigma}$ the
spin-tensor which obeys the equation:
$\frac{D^{(4)} S^{\mu \nu}}{D S}=2^{(4)} p^{[\mu(4)} v^{\nu]}=-\frac{1}{2 M}\left(-^{(4)} g\right)^{1 / 2(4)} \epsilon^{\mu \nu \lambda \rho(4)} R_{\lambda \alpha \beta \gamma}{ }^{(4)} v^{\alpha(4)} S^{\beta \gamma(4)} S_{\rho}$
for the torsion. ${ }^{(4)} S_{p}$ is the spin vector which is related to the spin-tensor in the following way:

$$
\begin{equation*}
{ }^{(4)} S_{\rho}=\frac{1}{2 M}\left({ }^{(4)} g\right)^{1 / 2(4)} \epsilon_{\mu \nu \lambda \rho}{ }^{(4)} p^{\mu(4)} S^{\nu \lambda} \tag{33}
\end{equation*}
$$

The equation which forces the particle on a centre-of-mass path is

$$
\begin{equation*}
{ }^{(4)} p_{\mu}{ }^{(4)} S^{\mu \nu}=0 . \tag{3.4}
\end{equation*}
$$

M is the mass of the test particle:

$$
\begin{equation*}
M^{2}={ }^{(4)} p_{\mu}^{(4)} p^{\mu} \tag{3.5}
\end{equation*}
$$

while the $\operatorname{spin} S$ is given by:

$$
\begin{equation*}
S^{2}=\frac{1}{2}{ }^{(4)} S_{\mu \nu}^{(4)} S^{\mu \nu} . \tag{3.6}
\end{equation*}
$$

The spin of a test particle is limited by the relation:

$$
\begin{equation*}
S / M \leqslant r_{0} \tag{3.7}
\end{equation*}
$$

where r_{0} is the dimension of the particle, so that the outer surface of the particle does not rotate faster than the speed of light. It is then possible to calculate (3.1) in first orderior the metric (1.1) explicitly. Working in the isotropic form of (1.1) Wald finds that since the test particle is initially at rest:

$$
{ }^{(4)} v^{\mu} \simeq(1,0,0,0)
$$

and

$$
{ }^{(4)} p_{\mu}{ }^{(4)} S^{\mu \nu} \simeq M^{(4)} v_{\mu}^{(4)} S^{\mu \nu}=0
$$

and therefore:

$$
\begin{equation*}
S^{0 i}=-S^{i 0}=0 \quad S_{j k}=\epsilon_{j k l} S^{l} \tag{3.8}
\end{equation*}
$$

the equation for the generalized force (3.1) can be reduced to:

$$
\begin{equation*}
F_{\mathrm{G}}^{i}=-\frac{1(4)}{2} R_{0 j k}^{i} \epsilon^{j k l} S_{l} \tag{3.9}
\end{equation*}
$$

This becomes in first order:

$$
\begin{equation*}
\boldsymbol{F}_{\mathrm{G}}=-\nabla\left(\frac{-\boldsymbol{S} \cdot \boldsymbol{J}+3(\boldsymbol{S} \cdot \hat{r})(\boldsymbol{J} \cdot \hat{\boldsymbol{r}})}{r^{3}}\right)+O\left(\frac{1}{r^{5}}\right) \tag{3.10a}
\end{equation*}
$$

(3.10a) demonstrates the similarity, up to the sign, with the force term describing the interaction between two magnetic dipoles:

$$
\begin{equation*}
F_{\mathrm{M}}=-\nabla\left(\frac{\mu_{1} \cdot \mu_{2}-3\left(\mu_{1} \cdot \hat{r}\right)\left(\mu_{2} \cdot \hat{r}\right)}{r^{3}}\right) \tag{3.106}
\end{equation*}
$$

A different use can be made of equation (3.9) by applying the Codazzi equation to it (Misner et al 1973, p 514):

$$
\begin{equation*}
{ }^{(4)} R_{i j k}^{0}=\left(K_{i| | k}-K_{i k j \mid}\right) \tag{3.11}
\end{equation*}
$$

-

$$
\begin{equation*}
K_{i j}=-\frac{1}{2} f_{n} \gamma_{i j} \tag{3.12}
\end{equation*}
$$

abeing the normal to a space-like hypersurface. $K_{i j}$ is related to $\pi_{i j}$ in the following nat

$$
\begin{equation*}
\pi^{i j}=\gamma^{1 / 2}\left(\gamma^{i j} K_{m}^{m}-K^{i j}\right) \tag{3.13}
\end{equation*}
$$

l king (3.11) in (3.9) we get:

$$
\begin{equation*}
F_{\mathrm{Gi}} \simeq \epsilon^{j k l} S_{l} K_{i j k} . \tag{3.14}
\end{equation*}
$$

Hredefine β_{i}^{l} to be the negative curl of the \boldsymbol{K} field we can write

$$
\begin{equation*}
F_{G} \simeq S . \beta . \tag{3.15a}
\end{equation*}
$$

This is similar to the expression for the magnetic force (Jackson 1962).

$$
\begin{equation*}
F_{M}=(\boldsymbol{\mu}, \boldsymbol{\nabla}) \boldsymbol{B} \tag{3.15b}
\end{equation*}
$$

mere \boldsymbol{B} is the magnetic field. Thus through equations (3.13) and (3.15a), the tiematical momenta determine the force on a spinning test particle much in the same ny as the magnetic field causes two magnetic dipoles to interact according to (3.15b).

4 Condusion

The construction technique (1.3) applied on a stationary axisymmetric system was not suffient to arrive at the Kerr solution. A few extra assumptions had to be made in order to get this result. For the discussion of a non-stationary metric-which goes symptotically like the Kerr metric-these same assumptions will still have to be valid. Ody then will the usefulness of the entire method be apparent.
One point which this technique has revealed is the similarity that exists between the Ifeld (consisting entirely of kinematical momenta, for the gravitational field in the ese of the Kerr metric) and the magnetic field \boldsymbol{B} induced by a magnetic dipole.

Actaowledgment

We wish to thank Professor Dr C C Grosjean for many valuable suggestions and for a atical reading of the manuscript.

Ruferences

Amomitt R and Deser S 1959 Phys. Rev. 113 745-50
Arowit R, Deser S and Misner C W 1959 Phys. Rev. 116 1322-30
-1960a Phys. Rev. 117 1595-1602

- 1600 J. Malh. Phys. 1 434-9
- 1900c Phys. Rev. Lett. 4 375-7
- 1960d Nuovo Cim. 25 487-91
- 161a Phys. Rev. 121 1556-66
-1661b Phys. Rev. 122 997-1006
Bara B K, Chitre D M, Nutku Y and Moncrief V E 1972 Phys. Rev. D5 2467-70

Dirac P A M 1958a Proc. R. Soc. A246 326-32

- 1958b Proc. R. Soc. A246 333-44

Jackson J D 1962 Classical Electrodynamics (New York: Wiley) p 149
Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman)
Schiff L 1960 Proc. Natl. Acad. Sci. 46 871-82
Wald R 1972 Phys. Rev. D6 406-13
Wilkins D 1970 Ann. Phys. NY 61 277-93

