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m e t .  As a first step towards the investigation of more general asymptotically Rat 
metria a new technique is devised which, within the framework of the Hamilton formalism 
and using proper boundary conditions for a stationary axisymmetric gravitational field, 
yields the Kerr metric. This metric appears as a 'first-order correction' with respect to the 
Schwarzschild metric which is built into the more general metric. This goal can only be 
attained if one introduces so called 'kinematical momenta'. A physical interpretation of 
these momenta becomes possible if one studies the force exerted by the Ken field on a 
spinning test particle. 

harant article Berger et aI (1972) rederived the Schwarzschild metric by applying 
dPADMformalism (Arnowitt and Deser 1959, Arnowitt et a1 1959, 1960a, b, c, d, 
I%la, b, Dirac 1958a, b) to a spherically symmetric system. Unfortunately when we 
tpplythe same method to an axisymmetric system, in the hope of recovering the Kerr 
PUtric, the result is a system of two non-linear differential equations which we are 
dhointegrate. At this point we introduce a construction technique which is based 
m" reasonable assumptions and foundations in view of later applications to more 
msituations. Since we want to work with asymptotically flat metrics we start our 
cfkrusnon with the asymptotic expression for such a metric, as given by Misner et ai 
@% P 449, to be referred to as MTW). 

rfiereM%ds for the mass and J' for the spin of the source of the gravitational field. 
honWOdd cause extra terms in r-' to occur in (1.1). In terms of the ADM line 
dement 

dS2=(-NZ+NiNi) dt2+2Ni dx' dt+yij dx' dx' (1.2) 
are the so called lapse and shift functions and llyijll is the metric tensor in 

*$in"Fwo. 
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thre-space. We now define the following metric as a generalization of (1.1): 
rn+2+Sn+lrn+1+ . . . 

rn+2+(an+I -2M)r"" + . . . 
rn+2an+,rn+'+ . . . 
rn +pn- ,rn- l+ . . . 

y1 := e*@ = 

yn := e2A = 

... sin28 rn+4+~n+3rn+3+ 
rn+2+qn+lrn+1+ . . . y33 := e2P sin2$ = 

"= 

N2 = 

N3 = 

tnrn + tn - l rn - l+  . . . 
rn+2 +Xn+lrn+l+ . . . 
$n+ l rn+ l+$nrn+ .  . . 
rn+4+3n+3rn+3+ . . . 
an+lrn+l+wnrn + . . . 

. . . 

(1.30) 

(1.3c) 

(136) 

131  

K3f)  

where ai, p, S, . . . are arbitrary unknown functions of 0, 4 and t. Their number is 
limited by the value of the parameter n, since we forbid the occurrence of negative 
indices and exponents. N can be recovered from the other metric parameters. We 
remark that the Schwarzschild metric is built in for n = 0. The most general metric is 
found by the substitution of (1.3) into the Einstein equations, for arbitrary large values 
of n. As a result one obtains an infinite system of linear differential relations. These 
have to be integrated by algebraic and analytic manipulations for increasingvaluesof L 
starting at n = 0. This technique will be demonstrated in a subsequent paperforgend 
(i.e. non-symmetrical) time-dependent systems (for n = 0, 1). In that article wewillalso 
discuss the generality of the metric (1.3). As a last remark we would like to point oat 
that different values of n yield non-identical linear differential relations between the 
metric functions because of the changing number of variables. It is therefore oo! 
established a priori that a solution of the Einstein equations for n is also the only 
solution for n'> n. 

We now outline a few elements of the Hamilton formalism. In the ADM formaihJ 
one defines the action as: 

Here we use the ADM notation, except for yjj := '3'gijADM. It is always understoodinil 
and 4 2 that all quantities are defined in three-space so that we can omit the Sufi (3) 
everywhere. In (1.4) rj+ #, N and Ni are independent variables and variation Of 

action (1.4) with respect to these variables yields the Einstein equations. @and are 
defined in the following way: 

Variation Of the action with respect to M and N, determines the initial value equaum 
for #: 

= 0 (p  = 0, 1,2,3). (1.6) 
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dynamical Einstein equations can be obtained by varying I with respect to the 

Hamiltonian technique for asymptotically flat metrics 

*’ relation (1.5) one then finds: 

1/2 ijR -R i j ) -2NY-1 /2 (T i  m T==i - i T m  ,Ti’) 
tw 
+fi (Y 

- NI[ IlY 1 / Z Y i j  + y 1 / 2 ~ l i j  --ilmTmi --jImTmi. (1.7) 

&@g 1 with respect to the rii’ one simply recovers the definition for the zij as: 

(i.8) 

ea&pose of four coordinate conditions, three of which we use to diagonalize //yij/l, 
ytbfourth one is needed to secltre the slicing i f  the space-time by the following 
&n: 

(1.9a) 

%condition is valid on an arbitrary initial space-like hypersurface. Using the 
#skal equations (1.7) one can show that (1 .9~)  induces an equation for the lapse 
&on N: 

${1 = NR. (1.9b) 

xi = 2 N y - ” ’ ( ~ ~ ~  - 4 ~ i j ~ ’ l )  +Nilj +41i. 

1 Tr T = a , := T = 0. 

!criealntion of the metric in the axisymmetric case 

Unowwe did not require the three-metric to exhibit any particular symmetry. We 
k n o w  the three-line element for an axisymmetric system by: 

dl2:=eZp dr2+eZA dO2+eZp sin28 d+’ (2.1) 

4% P, A and p are solely functions of r, 8 and t. In order to have the correct 
Wtotic form the metric must agree with the general ,form given by MTW, i.e.: 

Yl l  = [ 1 - 7  2M+0 

y22 = y33 sin-28 = [ r2  + o(ro)] 
N2= 1--+0(-) 2M 1 

r r 

2Mar sin28 
r2 

N3= - 

&a:=.f/M, J being the angular momentum of the source. The Lagrange multi- 
N;: vanish in this coordinate system. The momenta can be defined by: 

(2.3) 

ot Rmarkthatit is not inconsistent to have off-diagonal rij appearingin (2 .3) ,  because 
from the initial value equations which we have not written down yet. As 
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we can read from the action: 

(2.4) 

the diagonal elements {vp, wA, vP} are the momenta conjugated to the quantitkr 
{p, A, p }  and they completely determine the dynamics Of the system. We note fi.tlru 
that the slicing condition (1.8a, 1%) reduces the number of degrees of freedom 
three, in equation (2.3), to two, as could be expected. AS we mentioned in 
introduction we will look for more general metria in a further article; at the presem 
time however, we limit ourselves to the search for a stationary metric; thus 

yij = 0. (2.4 
In these circumstances the equations (1.7) assign to the momenta the followingvdua: 

ne = T A  =vp = 0 (2.64 b, c) 

which already eliminates all dynamical freedom and 

T I 2  = 0 
eP+A+3P 

T I 3  =- sin38(N3)' 
2N 
ecl+*+3P 

'K23 = -- sin38(N3)'. 2N 
Differentiation with respect to t, r and 8 is denoted respectively by a dot, a primeanda 
semicolon. As a next step we calculate Xo and Z' and find: 

x'3p,O ( 2 . 7 ~  b) 

(2.2) P := -2(d3)'- 2 ( ~ ~ ~ ) ; - - 4 p ' ~ ' ~  -4(p'+cot 

xsin28[A"+p"-p'A'- p'p' + p'A'S (A')2+(p')2]+2 e 2( l r+P)  

p = e-F-*-P s i n - l e ( 2 ~ ~ ~ v ~ ~  +27r331 v31 + 2 

x sin2e [p ' :+p; '  + ,,,L:p;+ (p ;)2 + (p;)2 -fA ;(I*.; + p  ;) - 1 

+cot e (p i+  p ; - $ A i ) ] } .  (2.761 

Since involves only non-dynamical variables, the constraint equation &P3=o IIIM 
follow asaresult of the other Einstein equations. The four initial value equationsrad: 

x' E p.. 0 ( 2 . 8 ~  b)  

x3=0 (2.k) 

2 P = O  (?.ad9 

with (2 .8~)  a consequence of (2.8d) and the dynamic equations. When we rePlaQ the 
value of R by d[r~/N in (2.8d) we include the slicing condition (1.9b). By thesaw 
token we parantee that the dynamical equations for and 7i are satisfied. Only 
one dynamical equation is left, that for h12. Those for +13 and +23Pare identicallym, 
nus: 
h&3"- pip'- (p; -k cOt e)(A' - p')] + N;' - p:N' - A - - e2p (N3)'(N3): sin28 = 0. (?c9' 

2N 
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mbind with (1.9b) and (2.9) are the Einstein equations which remain to be 2 n,,jir solution is not straightforward. By deducing a functional form for the 
d e r N w e  can bring in a small simplification. We find N by comparing the three- 
pdfoln-volme densities (y)”’ and (-(4)g)1/2 for the spherically symmetric (ss) and 
e e t r i c  (AS) case: 

(-(4)gs)1/’ = sin I3 (ySs)l/’ = ew+2As sin 13 

Ns = e-- (2.10) 

(- g) - 
&e As= pss and 

(4) - N(y)l/’ 

kt$ebindingrelation between the three quantities. In the axisymmetric case (yAS)l/’ is 
@by: 

lhissstil] leaves some freedom in the choice of N and (-(4)g)1/’. For purely 
phcnomenological reasons we choose 

- PAS+AAS+ PAS sin 8. (YAS) - e 

(-(4)gAs)1/2 = eZAAS sin 8 

rad 
N - -PAS+AAS-PAS AS-e 

for J tending to zero the axisymmetric solution will smoothly turn into a 

FdYWe introduce the special form (1.3) for the metric into the Einstein equations 
Wdy symmetric metric. 

lad we get for n = 0: as ansatz 

ytz := e2A = r’ + p 1  (2.1 l a )  

r4+d2r2+d,r +do 
y33 := e’p sin’e = sin’8 

r2 + P 2  

2Mar sin’8 N3 = 
r2+B, . 

(2.1 I b )  

(2.11c) 

(2.11d) 

(2.11e) 

( 2 . 1 1 f )  

. .  
wenoti@ that the role of the singularity r = 0 of the ss case has been taken over by 
‘Bi=OintheAs case. Since we want the physical interpretation of both singularities ? 

bbetheae--aS the location of the source of the gravitational field-it is easy to see 
Bi have to be equal. n u s :  

Pi = p. (2.11h) ‘ each of the Einstein equations we can group all terms on a common, 
as coefficients of a certain power of r. 1.n order to satisfy the equations, 

* 
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of &e coefficients has to vanish. This leads to a sizable number of sub -equk  
&ly a small fractionof them is linear in the metric parameters. We will thus inkg, 
the linear equations and check the solution on the non-hear ones. When we resgk 

to be ro we find for e the following results: the coefficients of ro and r-* a 
identially zero; this is something we would expect, because we had the S c h w w  
metric built into (1.3). The vanishing of the coefficient of r-' then gives: 

d;+ d i  mt 8 +2d3- d i -  d i  cot 8 -2d2+8"+/3' COt 8+ 2 8  = 0. (2.12Q) 
me =me application to the coefficient of order r-3 leads to: 

-2Mdi;'- 2Mdi cot 8 - 8Md3 +4Md* +4Mdi cot 8 + 16Mdz 

- d: - dj cot 8 -6d1 -4M/3;;-4M/3; cot 8 - 16MP = 0. (2.126) 

It follows from (2.126) that d l  contains M linearly. Therefore in order r-4 we getm 
equations instead of one: 
( U )  Order MO: 
di;'(2/3+d3+2d2)+di(-di+d3c0t 8+2/3 cot 8+2dZcot 8 )  

+dg(-d2-2d3-28)+di(di-d,  cot 8-2p  COt 8 - 2 d 3 ~ t  6 )  

+B;'(2d3+2dz+#3)+/3;(-/3'+2dz~0t 8+/3 Cot 8+2d3wt  6 )  

-di-db cot 6 - 12do +2(d2)'-6dzd3 +4(d$ + 14/3d3 

- 2 e 2 = 0  (2.12CJ 

(6)  order M Z :  

-4M2d; - 4M2di a t  8 + 4Md i: + 4Md i Cot 8 + 4M/3"+ 4M2/3; 

XCOt 8+42Mdl -40Mzd2+8Mzd3+40MZ/3-36M2a2~in20=0. 
(2.12c:l 

From these equations we can easily deduce that 

do - a4 d l  - Maz  dz ,  d3, /3 - a2. (2.124 
We can operate in a similar way for the second Einstein equation. Again the coefideoa 
of order ro and r-l yield zero. The next order, r-2, gives the following equation: 

2 d i - 4 / 3 ' - 2 d ; + ~ t  8(-4d2+8/3) = 0. (2.130) 

-6Mdj+2dj +8M/3;+~0t B(-6dI +8Mdz - 16M/3) = 0. (2.13bl 

Order r-' gives: 

In order r-4 we can again distinguish between order MO: 
di(4d2 +88) +di(2d2)+/3'(-8dz -4d3 -8/3)+&& 

+cot 8E-8do-8(d2)2+8BZ-4dZd3+ 16dz/3 +8d,p] = 0 (2.1%) 

and order M2: 
-6Mdj+12Md, cot 8=O. (2.132) 

The result of the integration is: 

dl = 2Maz sin '8 (2.141 
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(2.14b) 

(2 .14~)  

(2.14d) 

(2.14e) 

have to check all nonlinear equations and we find that they vanish when we 
~ ( 2 . 1 4 )  in them, so that the metric with parameters (2.14) is an exact solution for 
&wein equations, the Kerr metric: 

r’ + a’ cos% 
r’ - 2 Mr + a’ 

~22:=e2A=r’+a’cos’e 

y33 := e’p sin’8 = 

y1 := e’” = 

( r’ + a ’)’ - a ’ sin’8 ( r’ - 2 Mr + a ’) 
r 2 + a 2  CoS’e 

(2 .15~)  

(2.15b) 

(2 .15~)  

(2.15d) 

(N)Z = e - - 2 ~ + z A - - 2 ~  = (r2-2Mr+az)(r2+a’ cos’8) 
(r’ + a’)* - a ’ sin28( r’ - 2Mr + a’) * 

lkoffdiagonal momenta can now also be calculated: 

(2.15h) Ma sin 8 [r2(3r2 - a’) - a’ cos’8 (r’ - a’)] 
(?+a’ cos’O)[(r’+ a’)’- U’ sin28(rz - 2Mr + a’)] 

7r13 = 

2Ma3r sin’8 cos 8 
(r’+ a’ cos’e)[(r’+ a’)’- a’ sin28(r2- 2Mr + a’)] * *’3 = (2.15i) 

b w s e  to call these off-diagonal momenta ‘kinematical momenta’ so that the 
mon between these momenta and dynamical ones on the diagonal becomes 
Qarer. 

bhl interpretation of the kinematical momenta 

‘mdstudy of a spinning test particle in an asymptotically flat space-time has been 
*before (Schiff 1960, Wald 1972, Wilkins 1970), so we shall confine ourselves to a 
“ e  of the theory on this topic. Throughout this section we will use Wald’s 
&except that four-space-time quantities will now have a (4) suffix. The equation 

for a spinning test particle is given by: 
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spin-tensor which obeys the equation: 

The equation which forces'the particle on a centre-of-mass path is 

(3.4) 

(3.3 

(4) (41 ,U = 0. 

M2 = (4) (4) ir 
PIr P 9 

P, s 
M is the mass of the test particle: 

while the spin S is given by: 
s 2  = f(4)S ( 4 ) s a v  

PV 

The spin of a test particle is limited by the relation: 

S I M s r ,  

(3.61 

(3.71 
where r, is the dimension of the particle, so that the outer surface of the particledoesmw 
rotate faster than the speed of light. It is then possible to calculate (3.1) in first orderfor 
the metric (1.1) explicitly. Working in the isotropic form of (1.1) Wald finds that Sioce 
the test particle is initially at rest: 

(4) P I  
0 -(1,0,0,0) 

P, s 
and 

(4) (4) ,U ~ IM(4)44)S'U = 0 

(3.81 

the equation for the generalized force (3.1) can be reduced to: 
FA = -1(4)R 2 i ojkdklS(. (3.9! 

This becomes in first order: 

FG=-v( - S . J + 3 ( S .  r3 :)(a. F )  (3.100) 

(3.10a) demonstrates the similarity, up to the sign, with the force term describingtbc 
interaction between two magnetic dipoles: 

(3.10b) 

A different use can be made of equation (3.9) by applying the Codazzi equationfo5 
(Misner er a1 1973, p 514): 

(4)R0.. =(K.. -K. .) (3.111 

). ."=-v( PI * P, - 3(P,. i ) (Pz.  i )  
r3 

t ~ l k  rklj 
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xg is the second fundamental tensor defined by 
1 

rAae 
Kii = 4 Y i j  

(3.12) 

the normal to a space-like hypersurface. Kij is related to rij in the following 
IW 

(3.13) 

~ ( 3 . 1 1 )  in (3.9) we get: 

groed&e p: to be the negative curl of the K field we can write 

FGI = dk’S&ijlk. (3.14) 

&=S.P.  ( 3 . 1 5 ~ )  

%hsimilar to the expression for the magnetic force (Jackson 1962). 
FM = ( p .  V)B (3.15b) 

&e 5 is the magnetic field. Thus through equations (3.13) and (3.15a), the 
matical momenta determine the force on a spinning test particle much in the same 
layasthemagnetic field causes two magneticdipoles to interact according to (3.1%). 

TBeoonstruction technique (1.3) applied on a stationary axisymmetric system was not 
dkient to arrive at the Kerr solution. A few extra assumptions had to be made in 
Ordw to get this result. For the discussion of a non-stationary metric-which goes 
raymptotically like the Kerr metric-these same assumptions will still have to be valid. 
Mythen will the usefulness of the entire method be apparent. 

One point which this technique has revealed is the similarity that exists between the 
Yfdd (consisting entirely of kinematical momenta, for the gravitational field in the 
w f t h e  Kerr metric) and the magnetic field B induced by a magnetic dipole. 
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